When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  3. Template:Correlation and covariance - Wikipedia

    en.wikipedia.org/wiki/Template:Correlation_and...

    Download as PDF; Printable version; In other projects Wikidata item; ... Part of a series on Statistics: Correlation and covariance; For random vectors ...

  4. RV coefficient - Wikipedia

    en.wikipedia.org/wiki/RV_coefficient

    Note that standard usage is to have matrices for the variances and covariances of vector random variables. Given these innovative definitions, the RV-coefficient is then just the correlation coefficient defined in the usual way. Suppose that X and Y are matrices of centered random vectors (column vectors) with covariance matrix given by

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    When the covariance is normalized, one obtains the Pearson correlation coefficient, which gives the goodness of the fit for the best possible linear function describing the relation between the variables. In this sense covariance is a linear gauge of dependence.

  7. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  8. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    An entity closely related to the covariance matrix is the matrix of Pearson product-moment correlation coefficients between each of the random variables in the random vector , which can be written as ⁡ = (⁡ ()) (⁡ ()), where ⁡ is the matrix of the diagonal elements of (i.e., a diagonal matrix of the variances of for =, …,).

  9. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...