When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    It is calculated as the sum of squares of the prediction residuals for those observations. [ 1 ] [ 2 ] [ 3 ] Specifically, the PRESS statistic is an exhaustive form of cross-validation , as it tests all the possible ways that the original data can be divided into a training and a validation set.

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If that sum of squares is divided by n, the number of observations, the result is the mean of the squared residuals. Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n , where df is the number of degrees of freedom ( n ...

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    In statistics, the explained sum of squares (ESS), alternatively known as the model sum of squares or sum of squares due to regression (SSR – not to be confused with the residual sum of squares (RSS) or sum of squares of errors), is a quantity used in describing how well a model, often a regression model, represents the data being modelled.

  7. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    For statistical inference, sums-of-squares can still be formed: the model sum-of-squares is ‖ ‖; the residual sum-of-squares is ‖ ‖. However, because H does not correspond to an ordinary least-squares fit (i.e. is not an orthogonal projection), these sums-of-squares no longer have (scaled, non-central) chi-squared distributions, and ...

  8. Partition of sums of squares - Wikipedia

    en.wikipedia.org/wiki/Partition_of_sums_of_squares

    If the sum of squares were not normalized, its value would always be larger for the sample of 100 people than for the sample of 20 people. To scale the sum of squares, we divide it by the degrees of freedom, i.e., calculate the sum of squares per degree of freedom, or variance. Standard deviation, in turn, is the square root of the variance.

  9. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models. Deviance can be related to Kullback-Leibler divergence. [1]