When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the t

  3. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The run-time bit complexity to multiply two n-digit numbers using the algorithm is (⁡ ⁡ ⁡) in big O notation. The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007.

  4. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.

  5. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require () elementary operations.

  6. Chisanbop - Wikipedia

    en.wikipedia.org/wiki/Chisanbop

    The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...

  8. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication algorithms have been designed that reduce the computation time considerably when multiplying large numbers. Methods based on the discrete Fourier transform reduce the computational complexity to O ( n log n log log n ) .

  9. Toom–Cook multiplication - Wikipedia

    en.wikipedia.org/wiki/Toom–Cook_multiplication

    Given two large integers, a and b, Toom–Cook splits up a and b into k smaller parts each of length l, and performs operations on the parts. As k grows, one may combine many of the multiplication sub-operations, thus reducing the overall computational complexity of the algorithm. The multiplication sub-operations can then be computed ...