When.com Web Search

  1. Ads

    related to: euclidean geometry grade 10 reasons and solutions free download

Search results

  1. Results From The WOW.Com Content Network
  2. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  3. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Van Schooten's theorem (Euclidean geometry) Van Vleck's theorem (mathematical analysis) Vantieghems theorem (number theory) Varignon's theorem (Euclidean geometry) Vieta's formulas ; Vietoris–Begle mapping theorem (algebraic topology) Vinogradov's theorem (number theory) Virial theorem (classical mechanics) Vitali convergence theorem (measure ...

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  5. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  6. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.

  7. Butterfly theorem - Wikipedia

    en.wikipedia.org/wiki/Butterfly_theorem

    The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows: [1]: p. 78 Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.