Search results
Results From The WOW.Com Content Network
Localized molecular orbitals are molecular orbitals which are concentrated in a limited spatial region of a molecule, such as a specific bond or lone pair on a specific atom. They can be used to relate molecular orbital calculations to simple bonding theories, and also to speed up post-Hartree–Fock electronic structure calculations by taking ...
The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.
The symmetry properties of molecular orbitals means that delocalization is an inherent feature of molecular orbital theory and makes it fundamentally different from (and complementary to) valence bond theory, in which bonds are viewed as localized electron pairs, with allowance for resonance to account for delocalization.
The combination of IBO analysis with other computational methods, such as natural bond orbital (NBO) analysis for a Ti-catalyzed pyrrole synthesis [20] or natural localized molecular orbital (NLMO) analysis for an intramolecular cycloaddition of a phosphaalkene to an arene has likewise led to insightful results regarding the specifics of the ...
In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with maximum electron density.The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid orbitals" (NHO), "natural bonding orbitals" (NBO) and "natural (semi-)localized molecular orbitals" (NLMO).
Valence bond theory complements molecular orbital theory, which does not adhere to the valence bond idea that electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets of molecular orbitals which can extend over the entire molecule. Although both theories describe chemical bonding, molecular ...
Oxidation state is an important index to evaluate the charge distribution within molecules. [2] The most common definition of oxidation state was established by IUPAC, [3] which let the atom with higher electronegativity takes all the bonding electrons and calculated the difference between the number of electrons and protons around each atom to assign the oxidation states.
Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...