When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    k = 1 is the tangent line to the right of the circles looking from c 1 to c 2. k = −1 is the tangent line to the right of the circles looking from c 2 to c 1. The above assumes each circle has positive radius. If r 1 is positive and r 2 negative then c 1 will lie to the left of each line and c 2 to the right, and the two tangent lines will ...

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The tangent line to the unit circle at the point A, is perpendicular to , and intersects the y - and x-axes at points = (,) and = (,). The coordinates of these points give the values of all trigonometric functions for any arbitrary real value of θ in the following manner.

  4. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Draw the unit circle, and let P be the point (−1, 0). A line through P (except the vertical line) is determined by its slope. Furthermore, each of the lines (except the vertical line) intersects the unit circle in exactly two points, one of which is P. This determines a function from points on the unit circle to slopes.

  5. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    For an internally tangent circle that circumscribes the other circles, the sign is negative. If a straight line is considered a degenerate circle with zero curvature (and thus infinite radius), Descartes' theorem also applies to a line and three circles that are all three mutually tangent (see Generalized circle). [1]

  7. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    For example, the unit circle is defined by the implicit equation + =. In general, every implicit curve is defined by an equation of the form (,) = for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables

  8. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...

  9. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz. The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point.