When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  3. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

  4. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  5. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    Complete bipartite graph (or biclique), a special bipartite graph where every vertex on one side of the bipartition is connected to every vertex on the other side The simplex , which is identical to a complete graph of n + 1 {\displaystyle n+1} vertices, where n {\displaystyle n} is the dimension of the simplex.

  6. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n(n − 1) / 2 ⁠.

  7. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .

  8. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    For example, in the proofs of Sperner's lemma and the mountain climbing problem the geometric properties of the formula commonly arise. The complexity class PPA encapsulates the difficulty of finding a second odd vertex, given one such vertex in a large implicitly-defined graph.

  9. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...