Search results
Results From The WOW.Com Content Network
By analogy with the mathematical concepts vector and matrix, array types with one and two indices are often called vector type and matrix type, respectively. More generally, a multidimensional array type can be called a tensor type , by analogy with the physical concept, tensor .
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
[7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b;
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
An m × n (read as m by n) order matrix is a set of numbers arranged in m rows and n columns. Matrices of the same order can be added by adding the corresponding elements. Two matrices can be multiplied, the condition being that the number of columns of the first matrix is equal to the number of rows of the second matrix.
In computing, a group of parallel arrays (also known as structure of arrays or SoA) is a form of implicit data structure that uses multiple arrays to represent a singular array of records. It keeps a separate, homogeneous data array for each field of the record, each having the same number of elements. Then, objects located at the same index in ...
For "one-dimensional" (single-indexed) arrays – vectors, sequence, strings etc. – the most common slicing operation is extraction of zero or more consecutive elements. Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6).