Search results
Results From The WOW.Com Content Network
A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...
Common applications are screws, helical gears, and worm gears. The helix angle references the axis of the cylinder, distinguishing it from the lead angle, which references a line perpendicular to the axis. Naturally, the helix angle is the geometric complement of the lead angle. The helix angle is measured in degrees.
A crossed helical gear is a gear that operate on non-intersecting, non-parallel axes. The term crossed helical gears has superseded the term spiral gears. There is theoretically point contact between the teeth at any instant. They have teeth of the same or different helix angles, of the same or opposite hand.
A disadvantage of helical gears is a resultant thrust along the axis of the gear, which must be accommodated by appropriate thrust bearings. However, this issue can be circumvented by using a herringbone gear or double helical gear, which has no axial thrust - and also provides self-aligning of the gears. This results in less axial thrust than ...
Spiral bevel gear. A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight ...
A herringbone gear, a specific type of double helical gear, [1] is a side-to-side, rather than face-to-face, combination of two helical gears of opposite hands. [2] From the top, each helical groove of this gear looks like the letter V, and many together form a herringbone pattern (resembling the bones of a fish such as a herring).
Helical involute gears are typically only used in limited situations where the spirals of the teeth are of the same handedness, the spirals of the two involutes are of different handedness, and the line of action is the external tangents to the base circles (analogous to a normal belt drive, whereas normal gears are analogous to a crossed-belt ...
Therefore, regardless of the worm's size (sensible engineering limits notwithstanding), the gear ratio is the "size of the worm wheel - to - 1". Given a single-start worm, a 20-tooth worm wheel reduces the speed by the ratio of 20:1. With spur gears, a gear of 12 teeth must match with a 240-tooth gear to achieve the same 20:1 ratio.