Search results
Results From The WOW.Com Content Network
Attributes are closely related to variables. A variable is a logical set of attributes. [1] Variables can "vary" – for example, be high or low. [1] How high, or how low, is determined by the value of the attribute (and in fact, an attribute could be just the word "low" or "high"). [1] (For example see: Binary option)
A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...
The second type is comparative research. These designs compare two or more groups on one or more variable, such as the effect of gender on grades. The third type of non-experimental research is a longitudinal design. A longitudinal design examines variables such as performance exhibited by a group or groups over time (see Longitudinal study).
To control for nuisance variables, researchers institute control checks as additional measures. Investigators should ensure that uncontrolled influences (e.g., source credibility perception) do not skew the findings of the study. A manipulation check is one example of a control check. Manipulation checks allow investigators to isolate the chief ...
A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested. [4]
A research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1] Paired t-test, Wilcoxon signed-rank test
If not, the null hypothesis is supported (or, more accurately, not rejected), meaning no effect of the independent variable(s) was observed on the dependent variable(s). The result of empirical research using statistical hypothesis testing is never proof. It can only support a hypothesis, reject it, or do neither. These methods yield only ...
For example, researchers may exaggerate the effect of one variable, or downplay the effect of another: researchers may even select in subjects that fit their conclusions. This selection bias can happen at any stage of the research process. This introduces bias into the data where certain variables are systematically incorrectly measured. [9]