Search results
Results From The WOW.Com Content Network
This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X) n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution X k, and the coefficient of ...
The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta ...
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.
Reciprocal polynomials have several connections with their original polynomials, including: deg p = deg p ∗ if is not 0.; p(x) = x n p ∗ (x −1). [2]α is a root of a polynomial p if and only if α −1 is a root of p ∗.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b −1,a −1), and the probability density function in this range is =, and is zero elsewhere.