When.com Web Search

  1. Ads

    related to: how to solve multi-step equations

Search results

  1. Results From The WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  3. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    This can be contrasted with implicit linear multistep methods (the other big family of methods for ODEs): an implicit s-step linear multistep method needs to solve a system of algebraic equations with only m components, so the size of the system does not increase as the number of steps increases. [27]

  5. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  7. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  8. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    If , then the step is completed. Replace h {\textstyle h} with h new {\textstyle h_{\text{new}}} for the next step. The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α 2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.