Ad
related to: examples of biological nitrogen fixation
Search results
Results From The WOW.Com Content Network
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
The nif genes are genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N 2) to other nitrogen forms such as ammonia which the organism can use for various purposes.
Most biological nitrogen fixation occurs by the activity of molybdenum (Mo)-nitrogenase, found in a wide variety of bacteria and some Archaea. Mo-nitrogenase is a complex two-component enzyme that has multiple metal-containing prosthetic groups. [22] An example of free-living bacteria is Azotobacter.
These nitrogen nutrients then can be used in the process of protein synthesis for the plants. This whole process of nitrogen fixation by diazotroph is called biological nitrogen fixation. This biochemical reaction can be carried out under normal temperature and pressure conditions.
Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...
The energy for splitting the nitrogen gas in the nodule comes from sugar that is translocated from the leaf (a product of photosynthesis). Malate as a breakdown product of sucrose is the direct carbon source for the bacteroid. Nitrogen fixation in the nodule is very oxygen sensitive.
Nitrogen fixed by crusts has been shown to leak into surrounding substrate and can be taken up by plants, bacteria, and fungi. Nitrogen fixation has been recorded at rates of 0.7–100 kg/ha per year, from hot deserts in Australia to cold deserts. [11] Estimates of total biological nitrogen fixation are ~ 49 Tg/year (27–99 Tg/year). [10]
The process of nitrogen fixation requires an influx of energy in the form of adenosine triphosphate. Nitrogen fixation is highly sensitive to the presence of oxygen, so Azotobacter developed a special defensive mechanism against oxygen, namely a significant intensification of metabolism that reduces the concentration of oxygen in the cells. [40]