Search results
Results From The WOW.Com Content Network
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
A rational fraction is the quotient (algebraic fraction) of two polynomials. Any algebraic expression that can be rewritten as a rational fraction is a rational function. While polynomial functions are defined for all values of the variables, a rational function is defined only for the values of the variables for which the denominator is not zero.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral expression. An integral expression can always be written in fractional form by giving it the denominator 1.
A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.
For example, the fraction is proper, and the fractions + + + and + + are improper. Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant) and a proper rational fraction.
In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. [2] Every rational number can be represented as an irreducible fraction with positive denominator in exactly one way.
By using polynomial long division and the partial fraction technique from algebra, any rational function can be written as a sum of terms of the form (+) + (), where and are complex, is an integer, and () is a polynomial.