Ads
related to: 3 dimensional figures examples geometry
Search results
Results From The WOW.Com Content Network
Peak, an (n-3)-dimensional element For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.
A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids, prisms (and other polyhedrons), cubes, cylinders, cones (and truncated cones). [2]
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.
3.2 3-dimensional Euclidean geometry. 3.3 n-dimensional Euclidean geometry. 4 Other geometries ... relative position of figures, and the properties of space. Geometry ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex that is not contained in the base. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base. In the ...
In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope.
The 3-dimensional torus is the product of 3 circles. That is: =. The 3-torus, T 3 can be described as a quotient of R 3 under integral shifts in any coordinate. That is, the 3-torus is R 3 modulo the action of the integer lattice Z 3 (with the action being taken as vector addition).