When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere .

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  4. Stewart's theorem - Wikipedia

    en.wikipedia.org/wiki/Stewart's_theorem

    Diagram of Stewart's theorem. Let a, b, c be the lengths of the sides of a triangle. Let d be the length of a cevian to the side of length a.If the cevian divides the side of length a into two segments of length m and n, with m adjacent to c and n adjacent to b, then Stewart's theorem states that + = (+).

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles , i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: c = a 2 + b 2 − 2 a b cos ⁡ γ ; {\displaystyle c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;}

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.

  7. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Given two sides a and b and the angle between the sides C, the area of the triangle is given by half the product of the lengths of two sides and the sine of the angle between the two sides: [85] Area = Δ = 1 2 a b sin ⁡ C {\displaystyle {\mbox{Area}}=\Delta ={\frac {1}{2}}ab\sin C}

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]