When.com Web Search

  1. Ads

    related to: maths recurring decimals questions

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Midy's theorem - Wikipedia

    en.wikipedia.org/wiki/Midy's_theorem

    In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that

  4. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.

  5. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    Stylistic impression of the repeating decimal 0.9999..., representing the digit 9 repeating infinitely. In mathematics, 0.999... (also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternate way of writing the number 1. Following the standard rules for representing numbers in decimal notation, its value is the smallest ...

  6. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  7. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).

  8. Number - Wikipedia

    en.wikipedia.org/wiki/Number

    Representing other real numbers as decimals would require an infinite sequence of digits to the right of the decimal point. If this infinite sequence of digits follows a pattern, it can be written with an ellipsis or another notation that indicates the repeating pattern. Such a decimal is called a repeating decimal.

  9. Full reptend prime - Wikipedia

    en.wikipedia.org/wiki/Full_reptend_prime

    Base 10 may be assumed if no base is specified, in which case the expansion of the number is called a repeating decimal. In base 10, if a full reptend prime ends in the digit 1, then each digit 0, 1, ..., 9 appears in the reptend the same number of times as each other digit. [1]: 166 (For such primes in base 10, see OEIS: A073761.)