Search results
Results From The WOW.Com Content Network
An example of spectroscopy: a prism analyses white light by dispersing it into its component colors. Spectroscopy is the field of study that measures and interprets electromagnetic spectra. [1] [2] In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
The field includes the generation and detection of light, linear and nonlinear optical processes, and spectroscopy. Lasers and laser spectroscopy have transformed optical science. Major study in optical physics is also devoted to quantum optics and coherence, and to femtosecond optics. [1]
It can also be considered as the generation, distribution, analysis, and use of information in systems; Teletraffic engineering Telecommunications traffic engineering, teletraffic engineering, or traffic engineering is the application of traffic engineering theory to telecommunications. Teletraffic engineers use their knowledge of statistics ...
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
Spectroscopy, which studies the interaction between electromagnetic radiation and matter (absorption, dispersion or emission). [ 8 ] [ 9 ] Spectroelectrochemistry provides molecular, thermodynamic and kinetic information of reagents, products and/or intermediates involved in the electron transfer process.
The exact reverse of radiative recombination is light absorption. For the same reason as above, light with a photon energy close to the band gap can penetrate much farther before being absorbed in an indirect band gap material than a direct band gap one (at least insofar as the light absorption is due to exciting electrons across the band gap).
X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique that measures the very topmost 200 atoms, 0.01 um, 10 nm of any surface. It belongs to the family of photoemission spectroscopies in which electron population spectra are obtained by irradiating a material with a beam of X-rays .
The week-long school curricula reviewed the basics of X-ray instrumentation and the specific application of Norelco products. The faculty were members of the engineering department and academic consultants. The schools were well attended by academic and industrial R&D scientists. The engineering department was also a new product development group.