Search results
Results From The WOW.Com Content Network
The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-manifold. A square with interior is also a 2-manifold with boundary. A ball (sphere plus interior) is a 3-manifold with boundary. Its boundary is a sphere, a 2-manifold.
The case of dimension 4 is somehow a boundary case, as it manifests "low dimensional" behaviour smoothly (but not topologically); see discussion of "low" versus "high" dimension. Different categories of manifolds yield different classifications; these are related by the notion of "structure", and more general categories have neater theories.
Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher. The boundary of an (+)-dimensional manifold is an -dimensional manifold that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the ...
In differential topology, an area of mathematics, a neat submanifold of a manifold with boundary is a kind of "well-behaved" submanifold. To define this more precisely, first let be a manifold with boundary, and be a submanifold of .
The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .
The boundary of the upper half-plane is the x-axis. A point on the surface mapped via a chart to the x-axis is termed a boundary point. The collection of such points is known as the boundary of the surface which is necessarily a one-manifold, that is, the union of
A boundary point of a set is any element of that set's boundary. The boundary defined above is sometimes called the set's topological boundary to distinguish it from other similarly named notions such as the boundary of a manifold with boundary or the boundary of a manifold with corners, to name just a few examples.
In low-dimensional topology, a boundary-incompressible surface is a two-dimensional surface within a three-dimensional manifold whose topology cannot be made simpler by a certain type of operation known as boundary compression. Suppose M is a 3-manifold with boundary.