Search results
Results From The WOW.Com Content Network
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
Suppose : is a function taking as input a vector and outputting a scalar (). If all second-order partial derivatives of exist, then the Hessian matrix of is a square matrix, usually defined and arranged as = [].
with : [,), is called nonhomogeneous when (). The following theorem gives some sufficient conditions for the existence of the solution: The following theorem gives some sufficient conditions for the existence of the solution:
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...
Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them (e.g. by gluing along localizations or taking noncommutative stack quotients).
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions, possibly in some generalized sense.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.