Search results
Results From The WOW.Com Content Network
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
A machine learning model is a type of mathematical model that, once "trained" on a given dataset, can be used to make predictions or classifications on new data.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Attention in Machine Learning is a technique that mimics cognitive attention. In the context of learning on graphs, the attention coefficient α u v {\displaystyle \alpha _{uv}} measures how important is node u ∈ V {\displaystyle u\in V} to node v ∈ V {\displaystyle v\in V} .
A C++ implementation of Barnes-Hut is available on the github account of one of the original authors. The R package Rtsne implements t-SNE in R. ELKI contains tSNE, also with Barnes-Hut approximation; scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation.
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
COBWEB is an incremental system for hierarchical conceptual clustering.COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University. [1] [2]COBWEB incrementally organizes observations into a classification tree.
Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]