When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    When training a machine learning model, machine learning engineers need to target and collect a large and representative sample of data. Data from the training set can be as varied as a corpus of text , a collection of images, sensor data, and data collected from individual users of a service.

  3. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  4. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Attention in Machine Learning is a technique that mimics cognitive attention. In the context of learning on graphs, the attention coefficient α u v {\displaystyle \alpha _{uv}} measures how important is node u ∈ V {\displaystyle u\in V} to node v ∈ V {\displaystyle v\in V} .

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence

    Deep learning is a type of machine learning that runs inputs through biologically inspired artificial neural networks for all of these types of learning. [ 48 ] Computational learning theory can assess learners by computational complexity , by sample complexity (how much data is required), or by other notions of optimization .

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Robustness: If the model, cost function and learning algorithm are selected appropriately, the resulting ANN can become robust. Neural architecture search (NAS) uses machine learning to automate ANN design. Various approaches to NAS have designed networks that compare well with hand-designed systems.

  8. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output.With this form of generative deep learning, the output layer can get information from past (backwards) and future (forward) states simultaneously.

  9. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  1. Related searches mcmunn model in machine learning definition javatpoint python 3 github download

    machine learning wikimachine learning method
    machine learning theorymachine learning definition