When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Single-wavelength anomalous diffraction - Wikipedia

    en.wikipedia.org/wiki/Single-wavelength...

    Single-wavelength anomalous diffraction (SAD) is a technique used in X-ray crystallography that facilitates the determination of the structure of proteins or other biological macromolecules by allowing the solution of the phase problem.

  3. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    We can think these scalar waves as components of vector waves along a certain axis (x, y, or z axis) of the Cartesian coordinate system. The incident and diffracted waves propagate through space independently, except at points of the lattice L {\displaystyle L} of the crystal, where they resonate with the oscillators, so the phases of these ...

  4. Wavelength-dispersive X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Wavelength-dispersive_X...

    Wavelength-dispersive X-ray spectroscopy (WDXS or WDS) is a non-destructive analysis technique used to obtain elemental information about a range of materials by measuring characteristic x-rays within a small wavelength range. The technique generates a spectrum in which the peaks correspond to specific x-ray lines and elements can be easily ...

  5. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The measurement of the angles can be used to determine crystal structure, see x-ray crystallography for more details. [5] [13] As a simple example, Bragg's law, as stated above, can be used to obtain the lattice spacing of a particular cubic system through the following relation:

  6. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  7. Phase problem - Wikipedia

    en.wikipedia.org/wiki/Phase_problem

    In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography , where the phase problem has to be solved for the determination of a structure from diffraction data. [ 1 ]

  8. X-ray optics - Wikipedia

    en.wikipedia.org/wiki/X-ray_optics

    X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.

  9. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    When Wilhelm Röntgen discovered X-rays in 1895 [1] physicists were uncertain of the nature of X-rays, but suspected that they were waves of electromagnetic radiation.The Maxwell theory of electromagnetic radiation was well accepted, and experiments by Charles Glover Barkla showed that X-rays exhibited phenomena associated with electromagnetic waves, including transverse polarization and ...