Search results
Results From The WOW.Com Content Network
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
The target sum T in the SSP instance is set to an integer with "1" in the least-significant bit of every zone, that is, (2 0 +2 1 +...+2 3n-1). If the 3DM instance has a perfect matching, then summing the corresponding integers in the SSP instance yields exactly T. Conversely, if the SSP instance has a subset with sum exactly T, then, since the ...
Python 2.6 was released to coincide with Python 3.0, and included some features from that release, as well as a "warnings" mode that highlighted the use of features that were removed in Python 3.0. [ 28 ] [ 10 ] Similarly, Python 2.7 coincided with and included features from Python 3.1, [ 29 ] which was released on June 26, 2009.
The sum of squares due to lack of fit is the weighted sum of squares of differences between each average of y-values corresponding to the same x-value and the corresponding fitted y-value, the weight in each case being simply the number of observed y-values for that x-value.