When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Grain boundary sliding - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_sliding

    Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.

  3. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain ...

  4. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion [1] and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep. [2]

  5. File:Wentworth-Grain-Size-Chart.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Wentworth-Grain-Size...

    English: Wentworth grain size chart from United States Geological Survey Open-File Report 2006-1195, “Surficial sediment character of the Louisiana offshore continental shelf region: A GIS Compilation” by Jeffress Williams, Matthew A. Arsenault, Brian J. Buczkowski, Jane A. Reid, James G. Flocks, Mark A. Kulp, Shea Penland, and Chris J. Jenkins

  6. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Because grains usually have varying crystallographic orientations, grain boundaries arise. While undergoing deformation, slip motion will take place. Grain boundaries act as an impediment to dislocation motion for the following two reasons: 1. Dislocation must change its direction of motion due to the differing orientation of grains. [4] 2.

  7. Recrystallization (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Recrystallization_(metallurgy)

    Initial grain size affects the critical temperature. Grain boundaries are good sites for nuclei to form. Since an increase in grain size results in fewer boundaries this results in a decrease in the nucleation rate and hence an increase in the recrystallization temperature; Deformation affects the final grain size. Increasing the deformation ...

  8. Subgrain rotation recrystallization - Wikipedia

    en.wikipedia.org/wiki/Subgrain_rotation_re...

    In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.

  9. Pinning points - Wikipedia

    en.wikipedia.org/wiki/Pinning_points

    The result is that the dislocation must bend (which requires greater energy, or a greater stress to be applied) around the precipitates, which inevitably leaves residual dislocation loops encircling the second phase material and shortens the original dislocation. This schematic shows how a dislocation interacts with solid phase precipitates.