Search results
Results From The WOW.Com Content Network
Rhyolite is an extrusive igneous rock, formed from magma rich in silica that is extruded from a volcanic vent to cool quickly on the surface rather than slowly in the subsurface. It is generally light in color due to its low content of mafic minerals, and it is typically very fine-grained ( aphanitic ) or glassy .
Rhyolitic magma is felsic and the most abundant in silica, potassium, and sodium but the lowest in iron, magnesium, and calcium. [1] [3] The silica composition of rhyolitic magma ranges from 65-75 wt.%. [1] It forms in the lowest temperature range, from about 1200 °F to 1470 °F. [1], [3] Rhyolitic magma has the highest viscosity and gas ...
With such a high silica content, these magmas are extremely viscous, ranging from 10 8 cP (10 5 Pa⋅s) for hot rhyolite magma at 1,200 °C (2,190 °F) to 10 11 cP (10 8 Pa⋅s) for cool rhyolite magma at 800 °C (1,470 °F). [21] For comparison, water has a viscosity of about 1 cP (0.001 Pa⋅s).
Rhyolite is a volcanic rock with high silica content. Rhyolite has silica content similar to that of granite while basalt is compositionally equal to gabbro. Intermediate volcanic rocks include andesite, dacite, trachyte, and latite. [citation needed] Pyroclastic rocks are the product of explosive volcanism. They are often felsic (high in silica).
A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma into a more evolved, silica rich end member. Rock types of the tholeiitic magma series include tholeiitic basalt, ferro-basalt, tholeiitic basaltic andesite, tholeiitic andesite, dacite and rhyolite.
Since felsic magma is viscous, volcanic eruptions that form dacite or rhyolite are explosive and violent. The Archean felsic eruption may be assigned to Vesuvius eruption type in the present day. [36] Submarine rhyolitic flows were widespread in the Archean but are uncommon in the modern volcanic environment. [39]
Magma rich in silica and poor in dissolved water is most easily cooled rapidly enough to form volcanic glass. As a result, rhyolite magmas, which are high in silica, can produce tephra composed entirely of volcanic glass and may also form glassy lava flows. [2] Ash-flow tuffs typically consist of countless microscopic shards of volcanic glass. [3]
The process powering Plinian eruptions starts in the magma chamber, where dissolved volatile gases are stored in the magma. The gases vesiculate and accumulate as they rise through the magma conduit. These bubbles agglutinate and once they reach a certain size (about 75% of the total volume of the magma conduit) they explode.