When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  3. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  4. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  5. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.

  6. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.

  7. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    This calculation was performed using Ansys. Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory.

  8. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    This results in a constant bending moment between the two supports. Consequently, a shear-free zone is created, where the specimen is subjected only to bending. This has the advantage that no additional shear force acts on the specimen, unlike in the 3-point bending test. [6] The bending modulus for a flat specimen is calculated as follows:

  9. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The quantity is the extensional stiffness, is the coupled extensional-bending stiffness, and is the bending stiffness. For the situation where the beam has a uniform cross-section and no axial load, the governing equation for a large-rotation Euler–Bernoulli beam is