Search results
Results From The WOW.Com Content Network
A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor. [6]
This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the ...
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations .
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .
(This equation may be put on a rigorous foundation by interpreting it as a statement about differential forms.) One may view the method of integration by substitution as a partial justification of Leibniz's notation for integrals and derivatives. The formula is used to transform one integral into another integral that is easier to compute.