When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  3. Antiderivative (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Antiderivative_(complex...

    Otherwise, a function is an antiderivative of the zero function if and only if it is constant on each connected component of (those constants need not be equal). This observation implies that if a function g : U → C {\displaystyle g:U\to \mathbb {C} } has an antiderivative, then that antiderivative is unique up to addition of a function which ...

  4. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [18] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  6. Risch algorithm - Wikipedia

    en.wikipedia.org/wiki/Risch_Algorithm

    Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed ...

  7. Absolutely integrable function - Wikipedia

    en.wikipedia.org/wiki/Absolutely_integrable_function

    Then | | + + + + + | | so | | + + + + + | | This shows that the sum of the four integrals (in the middle) is finite if and only if the integral of the absolute value is finite, and the function is Lebesgue integrable only if all the four integrals are finite. So having a finite integral of the absolute value is equivalent to the conditions for ...

  8. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because d d x ( ln ⁡ | u | ) = u ′ u {\displaystyle {\tfrac {d}{dx}}(\ln |u|)={\tfrac {u'}{u}}} , which justifies taking the absolute ...

  9. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.