Search results
Results From The WOW.Com Content Network
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3]
One common use of open reading frames (ORFs) is as one piece of evidence to assist in gene prediction.Long ORFs are often used, along with other evidence, to initially identify candidate protein-coding regions or functional RNA-coding regions in a DNA sequence. [5]
The three primary genome browsers—Ensembl genome browser, UCSC genome browser, and the National Centre for Biotechnology Information (NCBI)—support different sequence analysis procedures, including genome assembly, genome annotation, and comparative genomics like exploring differential expression patterns and identifying conserved regions.
Ab Initio gene prediction is an intrinsic method based on gene content and signal detection. Because of the inherent expense and difficulty in obtaining extrinsic evidence for many genes, it is also necessary to resort to ab initio gene finding, in which the genomic DNA sequence alone is systematically searched for certain tell-tale signs of protein-coding genes.
DNA annotation or genome annotation is the process of identifying the locations of genes and all of the coding regions in a genome and determining what those genes do. An annotation (irrespective of the context) is a note added by way of explanation or commentary. Once a genome is sequenced, it needs to be annotated to make sense of it. [49]
The Gene Ontology (GO) is a major bioinformatics initiative to unify the representation of gene and gene product attributes across all species. [1] More specifically, the project aims to: 1) maintain and develop its controlled vocabulary of gene and gene product attributes; 2) annotate genes and gene products, and assimilate and disseminate annotation data; and 3) provide tools for easy access ...
Annotating large numbers of SNPs is a difficult and complex process, which need computational methods to handle such a large dataset. Many tools available have been developed for SNP annotation in different organisms: some of them are optimized for use with organisms densely sampled for SNPs (such as humans ), but there are currently few tools ...
With full-genome sequences available, structure prediction can be done more quickly through a combination of experimental and modeling approaches, especially because the availability of large number of sequenced genomes and previously solved protein structures allows scientists to model protein structure on the structures of previously solved ...