When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. That is false, however, for some algebraic objects like nonabelian groups.

  3. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.

  4. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated ...

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2 w . In mathematics and physics , a vector space (also called a linear space ) is a set whose elements, often called vectors , can be added together and multiplied ...

  6. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For Minkowski addition, the zero set, {}, containing only the zero vector, 0, is an identity element: for every subset S of a vector space, S + { 0 } = S . {\displaystyle S+\{0\}=S.} The empty set is important in Minkowski addition, because the empty set annihilates every other subset: for every subset S of a vector space, its sum with the ...

  7. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    This parallels the extension of the scalar product of vector spaces to the direct sum above. The resulting abelian group is called the direct sum of G and H and is usually denoted by a plus symbol inside a circle: It is customary to write the elements of an ordered sum not as ordered pairs (g, h), but as a sum g + h.

  8. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.

  9. Complemented subspace - Wikipedia

    en.wikipedia.org/wiki/Complemented_subspace

    The vector space is said to be the algebraic direct sum (or direct sum in the category of vector spaces) when any of the following equivalent conditions are satisfied: The addition map : is a vector space isomorphism. [1] [2] The addition map is bijective.