Search results
Results From The WOW.Com Content Network
Graded potentials that make the membrane potential less negative or more positive, thus making the postsynaptic cell more likely to have an action potential, are called excitatory postsynaptic potentials (EPSPs). [4] Depolarizing local potentials sum together, and if the voltage reaches the threshold potential, an action potential occurs in ...
Pages in category "Graded potentials" The following 10 pages are in this category, out of 10 total. ... Slow-wave potential; Subthreshold membrane potential oscillations;
A receptor potential, also known as a generator potential, [1] a type of graded potential, is the transmembrane potential difference produced by activation of a sensory receptor. [2] A receptor potential is often produced by sensory transduction. [3] It is generally a depolarizing event resulting from inward current flow.
Electrotonic potential (or graded potential), a non-propagated local potential, resulting from a local change in ionic conductance (e.g. synaptic or sensory that engenders a local current). When it spreads along a stretch of membrane, it becomes exponentially smaller (decrement). Action potential, a propagated impulse.
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: . Temperature 298.15 K (25.00 °C; 77.00 °F); ...
This causes the membrane potential to drop down to its resting membrane potential of -100mV. Hyperpolarization occurs because the slow-acting potassium channels take longer to deactivate, so the membrane overshoots the resting potential. It gradually returns to resting potential and is ready for another action potential to occur.
For example, figure 1 depicts the localized nature and the graded potential nature of these subthreshold membrane potential oscillations, also giving a visual representation of their placement on an action potential graph, comparing subthreshold oscillations versus a fire above the threshold. In some types of neurons, the membrane potential can ...
Where voltage, V, is measured in millivolts, x is distance from the start of the potential (in millimeters), and λ is the length constant (in millimeters). V max is defined as the maximum voltage attained in the action potential, where: = where r m is the resistance across the membrane and I is the current flow.