Search results
Results From The WOW.Com Content Network
For example, a system with an external clock of 100 MHz and a 36x clock multiplier will have an internal CPU clock of 3.6 GHz. The external address and data buses of the CPU (often collectively termed front side bus (FSB) in PC contexts) also use the external clock as a fundamental timing base; however, they could also employ a (small) multiple ...
In digital electronic design a clock domain crossing (CDC), or simply clock crossing, is the traversal of a signal in a synchronous digital circuit from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear asynchronous on the incoming clock boundary.
This type of clock gating is race-condition-free and is preferred for FPGA designs. For FPGAs, every D-type flip-flop has an additional CE input signal. Clock gating works by taking the enable conditions attached to registers, and uses them to gate the clocks. A design must contain these enable conditions in order to use and benefit from clock ...
Further, a "cumulative clock rate" measure is sometimes assumed by taking the total cores and multiplying by the total clock rate (e.g. a dual-core 2.8 GHz processor running at a cumulative 5.6 GHz). There are many other factors to consider when comparing the performance of CPUs, like the width of the CPU's data bus , the latency of the memory ...
Without knowing the clock frequency it is impossible to state if one set of timings is "faster" than another. For example, DDR3-2000 memory has a 1000 MHz clock frequency, which yields a 1 ns clock cycle. With this 1 ns clock, a CAS latency of 7 gives an absolute CAS latency of 7 ns. Faster DDR3-2666 memory (with a 1333 MHz clock, or 0.75 ns ...
When a program wants to time its own operation, it can use a function like the POSIX clock() function, which returns the CPU time used by the program. POSIX allows this clock to start at an arbitrary value, so to measure elapsed time, a program calls clock(), does some work, then calls clock() again. [1] The difference is the time needed to do ...
Mechanical clocks must be wound periodically, usually by turning a knob or key or by pulling on the free end of the chain, to store energy in the weight or spring to keep the clock running. In electric clocks, the power source is either a battery or the AC power line. In clocks that use AC power, a small backup battery is often included to keep ...
For a given CPU core, energy usage will scale up as its clock rate increases. Reducing the clock rate or undervolting usually reduces energy consumption; it is also possible to undervolt the microprocessor while keeping the clock rate the same. [2] New features generally require more transistors, each of which uses power.