Search results
Results From The WOW.Com Content Network
A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.
Going the other direction, the matrix exponential of any skew-symmetric matrix is an orthogonal matrix (in fact, special orthogonal). For example, the three-dimensional object physics calls angular velocity is a differential rotation, thus a vector in the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} tangent to SO(3) .
The vector projection of a vector on a nonzero vector is defined as [note 1] = , , , where , denotes the inner product of the vectors and . This means that proj u ( v ) {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} is the orthogonal projection of v {\displaystyle \mathbf {v} } onto the line spanned by u ...
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.
Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.