Ad
related to: unit graph examples for kids
Search results
Results From The WOW.Com Content Network
Thus, it is a forbidden graph for the strict unit distance graphs, [20] but not one of the six forbidden graphs for the non-strict unit distance graphs. Other examples of graphs that are non-strict unit distance graphs but not strict unit distance graphs include the graph formed by removing an outer edge from , and the six-vertex graph formed ...
A collection of unit circles and the corresponding unit disk graph. In geometric graph theory, a unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. That is, it is a graph with one vertex for each disk in the family, and with an edge between two vertices whenever the corresponding vertices lie within a ...
It has 104 edges and 52 vertices and is currently the smallest known example of a 4-regular matchstick graph. [3] It is a rigid graph. [4] Every 4-regular matchstick graph contains at least 20 vertices. [5] Examples of 4-regular matchstick graphs are currently known for all number of vertices ≥ 52 except for 53, 55, 56, 58, 59, 61 and 62.
A graph of the vertices of a pentagon, realized as an intersection graph of disks in the plane. This is an example of a graph with sphericity 2, also known as a unit disk graph . In graph theory , the sphericity of a graph is a graph invariant defined to be the smallest dimension of Euclidean space required to realize the graph as an ...
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.
It remains NP-complete for bounded-degree planar graphs, [4] split graphs, bipartite graphs and their complements, line graphs of bipartite graphs, [5] unit disk graphs, [6] interval graphs of diameter 2 and permutation graphs of diameter 2, [7] and graphs of bounded treewidth. [8]
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one. In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. [1]
A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest . Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts.