When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  3. Non-Archimedean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Archimedean_geometry

    An example of such a geometry is the Dehn plane. Non-Archimedean geometries may, as the example indicates, have properties significantly different from Euclidean geometry . There are two senses in which the term may be used, referring to geometries over fields which violate one of the two senses of the Archimedean property (i.e. with respect to ...

  4. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof. Sturm passed the request on to other mathematicians and Steiner was among the first to provide a solution.

  5. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  6. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    A direct proof using classical geometry was developed by James Mercer in 1923. [2] This solution involves drawing one additional line, and then making repeated use of the fact that the internal angles of a triangle add up to 180° to prove that several triangles drawn within the large triangle are all isosceles.

  7. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    Lexell's proof by breaking the triangle A ∗ B ∗ C into three isosceles triangles. The main idea in Lexell's c. 1777 geometric proof – also adopted by Eugène Catalan (1843), Robert Allardice (1883), Jacques Hadamard (1901), Antoine Gob (1922), and Hiroshi Maehara (1999) – is to split the triangle into three isosceles triangles with common apex at the circumcenter and then chase angles ...

  8. The deadly reason why you shouldn’t pop a pimple in the ...

    www.aol.com/deadly-reason-why-shouldn-t...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Ultrametric space - Wikipedia

    en.wikipedia.org/wiki/Ultrametric_space

    If G is an edge-weighted undirected graph, all edge weights are positive, and d(u,v) is the weight of the minimax path between u and v (that is, the largest weight of an edge, on a path chosen to minimize this largest weight), then the vertices of the graph, with distance measured by d, form an ultrametric space, and all finite ultrametric ...