When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Crystallographic point group - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_point_group

    These 32 groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms. In 1867 Axel Gadolin, who was unaware of the previous work of Hessel, found the crystallographic point groups independently using ...

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    According to the crystallographic restriction theorem, only a limited number of point groups are compatible with discrete translational symmetry: 27 from the 7 infinite series, and 5 of the 7 others. Together, these make up the 32 so-called crystallographic point groups.

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    A crystal system is a set of point groups in which the point groups themselves and their corresponding space groups are assigned to a lattice system. Of the 32 crystallographic point groups that exist in three dimensions, most are assigned to only one lattice system, in which case both the crystal and lattice systems have the same name. However ...

  5. Hermann–Mauguin notation - Wikipedia

    en.wikipedia.org/wiki/Hermann–Mauguin_notation

    The full and short symbols for all 32 crystallographic point groups are given in crystallographic point groups page. Besides five cubic groups, there are two more non-crystallographic icosahedral groups (I and I h in Schoenflies notation) and two limit groups (K and K h in Schoenflies notation). The Hermann–Mauguin symbols were not designed ...

  6. Point group - Wikipedia

    en.wikipedia.org/wiki/Point_group

    Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...

  7. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc (, 35h), P4/nbm (, 36h), P4/nnc ...

  8. Schoenflies notation - Wikipedia

    en.wikipedia.org/wiki/Schoenflies_notation

    The 27 point groups in the table plus T, T d, T h, O and O h constitute 32 crystallographic point groups. Groups with n = ∞ are called limit groups or Curie groups . There are two more limit groups, not listed in the table: K (for Kugel , German for ball, sphere), the group of all rotations in 3-dimensional space; and K h , the group of all ...

  9. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    Of the 32 point groups that exist in three dimensions, most are assigned to only one lattice system, in which case the crystal system and lattice system both have the same name. However, five point groups are assigned to two lattice systems, rhombohedral and hexagonal, because both lattice systems exhibit threefold rotational symmetry.