When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 combinations avoid consecutive rotations around the same axis (such as XXY) which would reduce the degrees of freedom that can be represented.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    The rotation axis is obviously orthogonal to this plane, and passes through the center C of the sphere. Given that for a rigid body any movement that leaves an axis invariant is a rotation, this also proves that any arbitrary composition of rotations is equivalent to a single rotation around a new axis.

  6. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  7. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    Axis angle gives parameters in S 2 × S 1; if we replace the unit vector by the actual axis of rotation, so that n and −n give the same axis line, the set of axis becomes P 2 (R), the real projective plane. But since rotations around n and −n are parameterized by opposite values of θ, the result is an S 1 bundle over P 2 (R), which turns ...

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Every non-trivial rotation is determined by its axis of rotation (a line through the origin) and its angle of rotation. Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group.

  9. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    Its subgroup of rotations is the dihedral group D n of order 2n, which still has the 2-fold rotation axes perpendicular to the primary rotation axis, but no mirror planes. Note: in 2D, D n includes reflections, which can also be viewed as flipping over flat objects without distinction of frontside and backside; but in 3D, the two operations are ...