Search results
Results From The WOW.Com Content Network
Beginning in the sympathetic nervous system, an external stimulus affects the adrenal medulla and causes a release of catecholamines. The sympathoadrenal system is a physiological connection between the sympathetic nervous system and the adrenal medulla and is crucial in an organism's physiological response to outside stimuli. [1]
Therefore, this response that acts primarily on the cardiovascular system is mediated directly via impulses transmitted through the sympathetic nervous system and indirectly via catecholamines secreted from the adrenal medulla. The sympathetic nervous system is responsible for priming the body for action, particularly in situations threatening ...
The adrenal medulla is the principal site of the conversion of the amino acid tyrosine into the catecholamines; epinephrine, norepinephrine, and dopamine. Because the ANS, specifically the sympathetic division, exerts direct control over the chromaffin cells , the hormone release can occur rather quickly. [ 2 ]
Very few parts of the sympathetic system use cholinergic receptors. In sweat glands the receptors are of the muscarinic type. The sympathetic nervous system also has some preganglionic nerves terminating at the chromaffin cells in the adrenal medulla, which secrete epinephrine and norepinephrine into the bloodstream.
An example of a neuroendocrine cell is a cell of the adrenal medulla (innermost part of the adrenal gland), which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them ...
Another notable structure is the medulla of the adrenal gland, where chromaffin cells function as modified post-ganglionic nerves. Instead of releasing epinephrine and norepinephrine into a synaptic cleft, these cells of the adrenal medulla release the catecholamines into the blood stream as hormones. [1]
Chromaffin cells, also called pheochromocytes (or phaeochromocytes), are neuroendocrine cells found mostly in the medulla of the adrenal glands in mammals.These cells serve a variety of functions such as serving as a response to stress, monitoring carbon dioxide and oxygen concentrations in the body, maintenance of respiration and the regulation of blood pressure. [1]
By the turn of the 19th century, it was agreed that the stimulation of sympathetic nerves could cause different effects on body tissues, depending on the conditions of stimulation (such as the presence or absence of some toxin). Over the first half of the 20th century, two main proposals were made to explain this phenomenon: