When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.

  3. Sign convention - Wikipedia

    en.wikipedia.org/wiki/Sign_convention

    The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.

  4. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The phoropter measurement is made at a common vertex distance of 12 mm from the eye. The equivalent prescription at the patient's cornea (say, for a contact lens) can be calculated as follows (this example assumes a negative cylinder sign convention): Power 1 is the spherical value, and power 2 is the steeper power of the astigmatic axis:

  5. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    Note however that in areas of optics other than design, other sign conventions are sometimes used. In particular, many undergraduate physics textbooks use the Gaussian sign convention in which convex surfaces of lenses are always positive. [3] Care should be taken when using formulas taken from different sources.

  6. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...

  7. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    Similarly to curved mirrors, thin lenses follow a simple equation that determines the location of the images given a particular focal length and object distance (): + = where is the distance associated with the image and is considered by convention to be negative if on the same side of the lens as the object and positive if on the opposite side ...

  8. Optical aberration - Wikipedia

    en.wikipedia.org/wiki/Optical_aberration

    If there is refraction at a collective spherical surface, or through a thin positive lens, O'2 will lie in front of O'1 so long as the angle u2 is greater than u1 (under correction); and conversely with a dispersive surface or lenses (over correction). The caustic, in the first case, resembles the sign > (greater than); in the second < (less than).

  9. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    When measuring the height of an inverted image using the cartesian sign convention (where the x-axis is the optical axis) the value for h i will be negative, and as a result M will also be negative. However, the traditional sign convention used in photography is "real is positive, virtual is negative". [1]