When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    One method, more obscure than most, is to alternate direction when rounding a number with 0.5 fractional part. All others are rounded to the closest integer. Whenever the fractional part is 0.5, alternate rounding up or down: for the first occurrence of a 0.5 fractional part, round up, for the second occurrence, round down, and so on.

  3. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.

  4. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    The exact result is 10005.85987, which rounds to 10005.9. With a plain summation, each incoming value would be aligned with sum, and many low-order digits would be lost (by truncation or rounding). The first result, after rounding, would be 10003.1. The second result would be 10005.81828 before rounding and 10005.8 after rounding. This is not ...

  8. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Rounding functions: the classic ways to round numbers; Spigot algorithm: a way to compute the value of a mathematical constant without knowing preceding digits; Square and Nth root of a number: Alpha max plus beta min algorithm: an approximation of the square-root of the sum of two squares; Methods of computing square roots; nth root algorithm ...

  9. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    If the n + 1 digit is 5 not followed by other digits or followed by only zeros, then rounding requires a tie-breaking rule. For example, to round 1.25 to 2 significant figures: Round half away from zero rounds up to 1.3. This is the default rounding method implied in many disciplines [citation needed] if the required rounding method is not ...