When.com Web Search

  1. Ads

    related to: polynomial with negative exponents

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    If F is a field and f and g are polynomials in F[x] with g ≠ 0, then there exist unique polynomials q and r in F[x] with = + and such that the degree of r is smaller than the degree of g (using the convention that the polynomial 0 has a negative degree). The polynomials q and r are uniquely determined by f and g. This is called Euclidean ...

  3. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    To find the number of negative roots, change the signs of the coefficients of the terms with odd exponents, i.e., apply Descartes' rule of signs to the polynomial = + + This polynomial has two sign changes, as the sequence of signs is (−, +, +, −) , meaning that this second polynomial has two or zero positive roots; thus the original ...

  4. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  5. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Its existence is based on the following theorem: Given two univariate polynomials a and b ≠ 0 defined over a field, there exist two polynomials q (the quotient) and r (the remainder) which satisfy = + and ⁡ < ⁡ (), where "deg(...)" denotes the degree and the degree of the zero polynomial is defined as being negative.

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If n is a negative integer, is defined only if x has a multiplicative inverse. [35] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:

  7. Laurent polynomial - Wikipedia

    en.wikipedia.org/wiki/Laurent_polynomial

    In mathematics, a Laurent polynomial (named after Pierre Alphonse Laurent) in one variable over a field is a linear combination of positive and negative powers of the variable with coefficients in . Laurent polynomials in X {\displaystyle X} form a ring denoted F [ X , X − 1 ] {\displaystyle \mathbb {F} [X,X^{-1}]} . [ 1 ]

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising and falling factorials are well defined in any unital ring, and therefore can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.

  9. Hankel matrix - Wikipedia

    en.wikipedia.org/wiki/Hankel_matrix

    Given a formal Laurent series = =, the corresponding Hankel operator is defined as [2]: [] [[]]. This takes a polynomial [] and sends it to the product , but discards all powers of with a non-negative exponent, so as to give an element in [[]], the formal power series with strictly negative exponents.