When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    Any superharmonic function that is bounded below by a harmonic function for all points on the boundary of a ball is bounded below by the harmonic function for all points inside the ball. Similarly, if a supermartingale and a martingale have equivalent expectations for a given time, the history of the supermartingale tends to be bounded below by ...

  3. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  4. Local martingale - Wikipedia

    en.wikipedia.org/wiki/Local_martingale

    In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local ...

  5. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone convergence theorem that the sequence be bounded from below.

  6. Local boundedness - Wikipedia

    en.wikipedia.org/wiki/Local_boundedness

    Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:

  7. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

  8. Graver basis - Wikipedia

    en.wikipedia.org/wiki/Graver_basis

    It may be assumed that all variables are bounded from below and above: such bounds either appear naturally in the application at hand, or can be enforced without losing any optimal solutions. But, even with linear objective functions the problem is NP-hard and hence presumably cannot be solved in polynomial time.

  9. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Indeed, the elements of define a pointwise bounded family of continuous linear forms on the Banach space := ′, which is the continuous dual space of . By the uniform boundedness principle, the norms of elements of S , {\displaystyle S,} as functionals on X , {\displaystyle X,} that is, norms in the second dual Y ″ , {\displaystyle Y'',} are ...