Search results
Results From The WOW.Com Content Network
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.
Equivalence relationships exist between exact copies of the same manifestation of a work or between an original item and reproductions of it, so long as the intellectual content and authorship are preserved. Examples include reproductions such as copies, issues, facsimiles and reprints, photocopies, and microfilms.
A very simple equivalence testing approach is the ‘two one-sided t-tests’ (TOST) procedure. [11] In the TOST procedure an upper (Δ U) and lower (–Δ L) equivalence bound is specified based on the smallest effect size of interest (e.g., a positive or negative difference of d = 0.3).
The relation is an equivalence relation on the set of functions of x; the functions f and g are said to be asymptotically equivalent. The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers.
Graph of an example equivalence with 7 classes An equivalence relation is a mathematical relation that generalizes the idea of similarity or sameness. It is defined on a set X {\displaystyle X} as a binary relation ∼ {\displaystyle \sim } that satisfies the three properties: reflexivity , symmetry , and transitivity .
An example is the relation "is equal to", because if a = b is true then b = a is also true. If R T represents the converse of R, then R is symmetric if and only if R = R T. [2] Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. [1]
In mathematics, given a category C, a quotient of an object X by an equivalence relation: is a coequalizer for the pair of maps , =,, where R is an object in C and "f is an equivalence relation" means that, for any object T in C, the image (which is a set) of : = (,) () is an equivalence relation; that is, a reflexive, symmetric and transitive relation.
For example, a group is an algebraic object consisting of a set together with a single binary operation, satisfying certain axioms. If is a group with operation , a congruence relation on is an equivalence relation on the elements of satisfying