Search results
Results From The WOW.Com Content Network
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .
Positive numbers: Real numbers that are greater than zero. Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal ...
A positive number multiplied by a positive number is positive (product of natural numbers), ... gives the reason why a negative number times a negative number yields ...
In this base 10 system, the rightmost digit of a natural number has a place value of 1, and every other digit has a place value ten times that of the place value of the digit to its right. In set theory, which is capable of acting as an axiomatic foundation for modern mathematics, [35] natural numbers can be represented by classes of equivalent ...
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. ... is the number of times n occurs, starting ... The natural ...
An integer is the number zero , a positive natural number (1, 2, 3, . . .), or the negation of a positive natural number (−1, −2, −3, . . .). [1] The negations or additive inverses of the positive natural numbers are referred to as negative integers. [2]
Including 0, the set has a semiring structure (0 being the additive identity), known as the probability semiring; taking logarithms (with a choice of base giving a logarithmic unit) gives an isomorphism with the log semiring (with 0 corresponding to ), and its units (the finite numbers, excluding ) correspond to the positive real numbers.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.