When.com Web Search

  1. Ad

    related to: polar form of a circle calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...

  3. Polar circle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Polar_circle_(geometry)

    Any two polar circles of two triangles in an orthocentric system are orthogonal. [1]: p. 177 The polar circles of the triangles of a complete quadrilateral form a coaxal system. [1]: p. 179 The most important property of the polar circle is the triangle is self-polar; the polar of each side/point is the opposite side/point.

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

  5. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle.

  6. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    If two lines a and k pass through a single point Q, then the polar q of Q joins the poles A and K of the lines a and k, respectively. The concepts of a pole and its polar line were advanced in projective geometry. For instance, the polar line can be viewed as the set of projective harmonic conjugates of a given point, the pole, with respect to ...

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The polar triangle A'B'C' The polar triangle associated with a triangle ABC is defined as follows. Consider the great circle that contains the side BC. This great circle is defined by the intersection of a diametral plane with the surface.

  8. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.

  9. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...