Search results
Results From The WOW.Com Content Network
Radiometric dating of minerals and rocks was pioneered by Ernest Rutherford (1906) and Bertram Boltwood (1907). [ 2 ] [ 3 ] Radiometric dating is now the principal source of information about the absolute age of rocks and other geological features , including the age of fossilized life forms or the age of Earth itself, and can also be used to ...
The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.23 ...
The radioactive system behind hafnium–tungsten dating is a two-stage decay as follows: 182 72 Hf → 182 73 Ta e − ν e 182 73 Ta → 182 74 W e − ν e. The first decay has a half-life of 8.9 million years, while the second has a half-life of only 114 days, [7] such that the intermediate nuclide tantalum-182 (182 Ta) can effectively be ignored.
Radiocarbon dating helped verify the authenticity of the Dead Sea scrolls. Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.
Often applied to the trace mineral zircon in igneous rocks, this method is one of the two most commonly used (along with argon–argon dating) for geologic dating. Monazite geochronology is another example of U–Pb dating, employed for dating metamorphism in particular. Uranium–lead dating is applied to samples older than about 1 million years.
Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar).
In historical geology, the primary methods of absolute dating involve using the radioactive decay of elements trapped in rocks or minerals, including isotope systems from younger organic remains (radiocarbon dating with 14 C) to systems such as uranium–lead dating that allow determination of absolute ages for some of the oldest rocks on Earth.
Lutetium–hafnium dating is a geochronological dating method utilizing the radioactive decay system of lutetium–176 to hafnium–176. [1] With a commonly accepted half-life of 37.1 billion years, [ 1 ] [ 2 ] the long-living Lu–Hf decay pair survives through geological time scales, thus is useful in geological studies. [ 1 ]