Search results
Results From The WOW.Com Content Network
For electron beams, intensity is the probability of electrons reaching some particular position on a detector (e.g. a charge-coupled device [2]) which is used to produce images that are interpreted in terms of both microstructure of inorganic or biological materials, as well as atomic scale structure. [3]
Hence, the intensity of radiation passing through any unit area (directly facing the point source) is inversely proportional to the square of the distance from the point source. Gauss's law for gravity is similarly applicable, and can be used with any physical quantity that acts in accordance with the inverse-square relationship.
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract. Being an inverse-square law , the law is similar to Isaac Newton 's inverse-square law of universal gravitation , but gravitational forces always make things attract, while ...
A postcard from Maxwell to Peter Tait.. In his 1865 paper titled A Dynamical Theory of the Electromagnetic Field, James Clerk Maxwell utilized the correction to Ampère's circuital law that he had made in part III of his 1861 paper On Physical Lines of Force.
James Clerk Maxwell was the first to obtain this relationship by his completion of Maxwell's equations with the addition of a displacement current term to Ampere's circuital law. This unified the physical understanding of electricity, magnetism, and light: visible light is but one portion of the full range of electromagnetic waves, the ...
We introduce the polarization density P, which has the following relation to E and D: = + and the following relation to the bound charge: = Now, consider the three equations: = = = The key insight is that the sum of the first two equations is the third equation.
The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.