When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  4. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: = where the n × n matrix A has a nonzero determinant, and the vector = (, …,) is the column vector of the variables.

  5. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Determinant definition has only multiplication, addition and subtraction operations. Obviously the determinant is integer if all matrix entries are integer. However actual computation of the determinant using the definition or Leibniz formula is impractical, as it requires O(n!) operations.

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  7. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  8. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    The Cauchy–Binet formula can be extended in a straightforward way to a general formula for the minors of the product of two matrices. Context for the formula is given in the article on minors, but the idea is that both the formula for ordinary matrix multiplication and the Cauchy–Binet formula for the determinant of the product of two ...

  9. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. It is also sometimes referred to as LR decomposition (factors into left and right triangular matrices).