Search results
Results From The WOW.Com Content Network
A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero ...
A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is the interior of the set of all non-negative matrices. While such matrices are commonly found, the term "positive matrix" is only occasionally used due to the possible confusion with positive-definite matrices, which are different.
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
One detail which should not be overlooked is that describing a real matrix as positive-definite presupposes that it is symmetric. (italics in the original). --Lambiam 07:14, 14 August 2008 (UTC) I don't think everybody agrees that the definition of positive-definite matrix implies the matrix is symmetric (in the real case).
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
Also apophthegm. A terse, pithy saying, akin to a proverb, maxim, or aphorism. aposiopesis A rhetorical device in which speech is broken off abruptly and the sentence is left unfinished. apostrophe A figure of speech in which a speaker breaks off from addressing the audience (e.g., in a play) and directs speech to a third party such as an opposing litigant or some other individual, sometimes ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Consider, as an example of , the C*-algebra of complex square matrices with the positive elements being the positive-definite matrices. The trace function defined on this C*-algebra is a positive functional, as the eigenvalues of any positive-definite matrix are positive, and so its trace is positive.